MPTMS Treated Au/PDMS Membrane for Flexible and Stretchable Strain Sensors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stretchable and Flexible High-Strain Sensors Made Using Carbon Nanotubes and Graphite Films on Natural Rubber

Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ~5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon...

متن کامل

Mechanisms and Materials of Flexible and Stretchable Skin Sensors

Wearable technology has attracted significant public attention and has generated huge societal and economic impact, leading to changes of both personal lifestyles and formats of healthcare. An important type of devices in wearable technology is flexible and stretchable skin sensors used primarily for biophysiological signal sensing and biomolecule analysis on skin. These sensors offer mechanica...

متن کامل

Stretchable and highly sensitive graphene-on-polymer strain sensors

The use of nanomaterials for strain sensors has attracted attention due to their unique electromechanical properties. However, nanomaterials have yet to overcome many technological obstacles and thus are not yet the preferred material for strain sensors. In this work, we investigated graphene woven fabrics (GWFs) for strain sensing. Different than graphene films, GWFs undergo significant change...

متن کامل

Embedded 3D printing of strain sensors within highly stretchable elastomers.

A new method, embedded-3D printing (e-3DP), is reported for fabricating strain sensors within highly conformal and extensible elastomeric matrices. e-3DP allows soft sensors to be created in nearly arbitrary planar and 3D motifs in a highly programmable and seamless manner. Several embodiments are demonstrated and sensor performance is characterized.

متن کامل

Flexible and stretchable electronics for biointegrated devices.

Advances in materials, mechanics, and manufacturing now allow construction of high-quality electronics and optoelectronics in forms that can readily integrate with the soft, curvilinear, and time-dynamic surfaces of the human body. The resulting capabilities create new opportunities for studying disease states, improving surgical procedures, monitoring health/wellness, establishing human-machin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Sensor Science and Technology

سال: 2016

ISSN: 1225-5475

DOI: 10.5369/jsst.2016.25.4.247